La Singularidad Desnuda

Un universo impredecible de pensamientos y cavilaciones sobre ciencia, tecnología y otros conundros

Posts Tagged ‘Redes Complejas’

Vacas esféricas, redes de distribución y la Ley de Kleiber

Posted by Carlos en febrero 4, 2010

Vaca esféricaLa Ley de Kleiber es una conocida –y controvertida– relación empírica entre la masa de un organismo y su tasa metabólica basal, esto es, los requisitos de energía necesarios para sobrevivir en reposo, en un en entorno de temperatura neutra. Su nombre hace referencia a Max Kleiber, el químico suizo que la propuso en 1932. Kleiber analizó datos relativos a los requisitos energéticos de diferentes animales, y observó que estos escalaban con la masa corporal de los mismos pero de manera sublineal. Más precisamente, si q es la tasa metábolica basal del animal y m es su masa, Kleiber observó que la primera seguía una ley de potencias q ~ mα, con α < 1. El valor empírico que obtuvo fue 0.76, que redondeó a 3/4. Esta relación empírica es un tanto sorprendente en tanto en cuanto un exponente de 2/3 –la conocida ley cuadrado-cubo– sería intuitivamente lo que cabría esperar: si nos imaginamos una vaca esférica, su volumen (proporcional a su masa) crece como el cubo del radio de la esfera, mientras que su superficie (que determina su emisión de calor) crece como el cuadrado de la misma. Sin embargo, el ajuste a 3/4 parece ser mejor que el de 2/3.

¿Dónde puede hallarse pues la razón de este exponente? Parece que el ejemplo de la vaca esférica podría no ser del todo realista, y que restricciones físicas en la construcción de las redes circulatorias –en particular en organismos con un punto central de distribución, como puede ser el corazón– puedan llevar a que patrones de crecimiento ligados al mencionado exponente sean más eficientes. De hecho, este fue el argumento que G. West, J.H. Brown y B.J. Enquist propusieron en 1997 en un artículo titulado

publicado en Science. En este trabajo West et al. derivaban el exponente 3/4 de las propiedades fractales de las ramificaciones de los vasos capilares para abarcar todo el volumen del organismo, en un régimen de minimización de la energía disipada.

Kleiber's Law

Kleiber M. (1947). Body size and metabolic rate. Physiological Reviews 27: 511-541.

Este trabajo no consiguió sin embargo disipar la controversia al respecto de la validez de la Ley de Kleiber, tanto por razones relativas a la relevancia del proceso fractal de ramificación, como por la evidencia empírica que parece seguir rehusando descartar conclusivamente la relación 2/3. Precisamente avivando el fuego de este debate, Peter Dodds –de la Universidad de Vermont– acaba de publicar un trabajo en el que se apoya claramente la hipótesis del exponente 2/3. El trabajo en cuestión lleva por título

y ha sido publicado hace unos días en Physical Review Letters. La idea básica es considerar el problema de diseñar una red de suministro que desde una fuente central abastezca a un conjunto de sumideros distribuidos en un espacio d-dimensional Ω. El volumen Vnet de esta red de distribución es

V_{net} \propto \rho_0 V^{1+\gamma_{\max}(1-2\epsilon-\zeta)}

donde ρ0 es la densidad de sumideros, γmax es el máximo exponente de crecimiento alométrico (el exponente que relaciona la dimensión espacial que crece más con el crecimiento del volumen del organismo), ζ es un exponente que relaciona la densidad de sumideros con la distancia a la fuente, y ε es el exponente que relaciona la velocidad de distribución a través de un conducto con su longitud. En el caso de vasos sanguíneos, Dodd considera γmax=1/d (el crecimiento isométrico de la red es el más eficiente), ζ=0 (los sumideros están uniformemente distribuidos) y ε=0 (la velocidad de distribución no varía en función de la longitud). Se obtiene entonces que

V_{net} \propto \rho_0 V^{1+1/d}

Dado que el volumen de la red debe crecer linealmente en este caso con el volumen del objeto (de lo contrario asintóticamente la red sería una fracción infinitesimal del volumen del organismo, o superior a éste lo que no tiene sentido), se deduce que la densidad de sumideros debe ser proporcional a V-1/d. Ahora, el consumo de energía en reposo Prest es proporcional al número de sumideros, por lo que se tiene

P_{rest} \propto \rho_0V \propto V^{-1/d}V \propto M^{(d-1)/d}

que para d=3 da lugar a la relación 2/3.

Más allá del debate sobre el valor exacto de cada decimal del exponente (que por otra parte es complejo de determinar empíricamente debido a las incertidumbres involucradas en el proceso), Dodd apunta un elemento interesante y es que de ser el exponente “real” mayor que 2/3 o bien habría una limitación fundamental en el crecimiento de los animales de sangre caliente, o bien hay otros factores que más allá del volumen de la red entran en juego en el proceso de minimización (por ejemplo, la impedancia). Es en cualquier caso apasionante lo que la teoría de redes puede aportar a la biología.

Anuncios

Posted in Biología, Fisiología, Matemáticas | Etiquetado: , , | 6 Comments »

Infecciones complejas en redes de mundo pequeño

Posted by Carlos en noviembre 9, 2007

Las redes complejas son una herramienta fenomenal para modelar infinidad de procesos naturales, sociales y tecnológicos. Básicamente la idea es representar a los actores que intervienen en el proceso (e.g., enzimas y metabolitos si estamos intentando modelar una red metabólica, animales si estamos modelando un sistema ecológico, etc.) como los vértices de un grafo, y conectarlos mediante arcos dirigidos o mediante aristas (según corresponda) si entre ellos existe una interrelación directa en el proceso de interés. Pensemos por ejemplo en una red social constituida por los habitantes de una cierta población. Construiríamos un grafo en el que los vértices son personas, y en la que añadimos un arco ab si la persona a conoce a la persona b (en este caso la relación será típicamente simétrica, por lo que los arcos serían aristas).

Si se construye una red de estas características, hay diferentes propiedades que con casi total seguridad se podrán observar. Una de estas -y la que más nos interesa en esta ocasión- es la propiedad de mundo pequeño. Esta propiedad -transmitida al folklore popular a través de los célebres seis grados de separación– establece que en una red de este tipo la longitud del camino (número de aristas que hay que atravesar) para ir de un nodo a otro cualquiera es pequeña, típicamente logarítmica en relación con el número total de nodos. Esto también suele reflejarse (aunque de manera más variable) en un alto agrupamiento de los nodos, esto es, en una alta probabilidad de que si un nodo está conectado a otros dos, entonces éstos también estén conectados entre sí (e.g., es probable que conozca a gente con la que tengo otros conocidos en común). La figura inferior ilustra un ejemplo clásico de red social basado en las relaciones de amistad dentro de un club de karate, y que fue estudiado por Wayne Zachary.

Zachary’s karate club network

El análisis de este tipo de redes sociales puede ser fundamental a la hora de realizar por ejemplo estudios epidemiológicos. Si el patrón de contagio de una enfermedad es simple, es decir, si basta con que un nodo tenga un vecino infectado para que con cierta probabilidad se infecte también (éste sería también el caso de las redes de computadores y los virus informáticos para poner por caso), la difusión de la enfermedad puede entenderse y predecirse fácilmente a partir de las propiedades topológicas de la red. En particular, resulta evidente que la presencia de enlaces largos (i.e., conexiones entre partes de la red que estarían de otra forma a relativa gran distancia) y de concentradores (nodos con elevada conectividad) favorecen mucho la difusión de infecciones simples así definidas. Esto llevó a Mark Granovetter a formular la siguiente aseveración:

Cualquier cosa que se vaya a difundir alcanzará a más personas y recorrerá una mayor distancia social si pasa a través de enlaces débiles [de larga distancia] antes que a través de enlaces fuertes [de corta distancia]”

Sin embargo, no todos los contagios (en el sentido amplio de transmisión de una cierta característica local de un nodo a otro) siguen el patrón simple descrito anteriormente. Por ejemplo, cuando el objeto del contagio es un cambio de hábitos sociales o conlleva la realización de actividades controvertidas o de riesgo, la infección no se realiza de un nodo a otro, sino que requiere que se cree una masa crítica de nodos vecinos antes de que un cierto nodo se infecte (e.g., alguien no va a cambiar de dieta porque un conocido lo haga, pero si un gran número de conocidos lo hacen o le sugieren que lo haga, se puede producir el cambio; obviamente, la masa crítica dependerá en cada caso de muchos factores, pero la idea subyacente es esa). Cabe entonces preguntarse si la afirmación de Granovetter, tan rotunda en el poder de los enlaces de larga distancia, sigue siendo aplicable en este caso. Eso es lo que Damon Centola y Michael Macy, de la Universidad de Cornell, han estudiado en un trabajo titulado:

que ha sido aceptado en el American Journal of Sociology. Centola y Macy analizan la difusión de contagios complejos en un tipo concreto de redes de mundo pequeño (retículos anulares en los que algunas aristas se reemplazan por aristas aleatorias). Uno de los conceptos centrales del análisis es el de “anchura de puente”, y que en cierto sentido es complementario al de “longitud de puente” (distancia que cubre el enlace). En esencia la anchura del puente entre un nodo A y un nodo B que comparten vecinos es el número de aristas entre los vecinos comunes de A y B y los vecinos sólidos de B que no lo son de A (la vecindad sólida de un nodo es el mismo más sus vecinos). Esta anchura de puente impone un límite superior a la complejidad de la infección que puede propagarse desde la vecindad de A a la vecindad de B. A una infección simple le basta una anchura de puente mínima (un enlace es suficiente) para saltar de un nodo a otro. Sin embargo, una infección que requiera dos vecinos infectados para infectar a un tercer nodo requiere una anchura de puente 3. Veámoslo con un ejemplo: supongamos A conectado a {G, H, J, K}, y B conectado a {J, K, M, N}; supongamos a su vez que J está conectado a {A, H, K, B}, que K está conectado a {A, J, B, M}, y que M está conectado a {B, K, N, O}. Los vecinos comunes de A y B son {J, K}, y el puente estaría formado por las aristas J-B, K-B, K-M (i.e., anchura 3). Si toda la vecindad de A está infectada, entonces las aristas J-B y K-B infectarían B, las aristas K-M, B-M infectarían M, y las aristas B-N, M-N infectarían N, completando el contagio a toda la vecindad de B.

En general la anchura de puente crítica en este tipo de redes para permitir el paso de un contagio complejo crece cuadráticamente con la complejidad de éste último. Esto quiere decir que un contagio complejo a larga distancia es muy improbable, ya que requeriría que se produjeran muchos enlaces de larga distancia entre los nodos afectados. Esto significa que la aseveración de Granovetter necesita al menos de una cierta matización cuando se tratan situaciones en las que el patrón de contagio es complejo. Más aún, la topología óptima de la red dependerá de este patrón. Esto es algo que debe ser tenido en cuenta en, por ejemplo, las campañas públicas de concienciación sobre temas sociales o de salud. ¿Sabrán algo de esto en los Ministerios? Seguro que sí.

Posted in Matemáticas, Sistemas Complejos, Sociedad | Etiquetado: , , | 2 Comments »